Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 114: e190150, 2019. tab, graf
Article in English | LILACS | ID: biblio-1020077

ABSTRACT

BACKGROUND Zika virus (ZIKV) infections reported in recent epidemics have been linked to clinical complications that had never been associated with ZIKV before. Adaptive mutations could have contributed to the successful emergence of ZIKV as a global health threat to a nonimmune population. However, the causal relationships between the ZIKV genetic determinants, the pathogenesis and the rapid spread in Latin America and in the Caribbean remain widely unknown. OBJECTIVES The aim of this study was to characterise three ZIKV isolates obtained from patient samples during the 2015/2016 Brazilian epidemics. METHODS The ZIKV genomes of these strains were completely sequenced and in vitro infection kinetics experiments were carried out in cell lines and human primary cells. FINDINGS Eight nonsynonymous substitutions throughout the viral genome of the three Brazilian isolates were identified. Infection kinetics experiments were carried out with mammalian cell lines A549, Huh7.5, Vero E6 and human monocyte-derived dendritic cells (mdDCs) and insect cells (Aag2, C6/36 and AP61) and suggest that some of these mutations might be associated with distinct viral fitness. The clinical isolates also presented differences in their infectivity rates when compared to the well-established ZIKV strains (MR766 and PE243), especially in their abilities to infect mammalian cells. MAIN CONCLUSIONS Genomic analysis of three recent ZIKV isolates revealed some nonsynonymous substitutions, which could have an impact on the viral fitness in mammalian and insect cells.


Subject(s)
Humans , Animals , Aedes/virology , Zika Virus/genetics , Zika Virus Infection/virology , Mice, Inbred BALB C , Phylogeny , Virus Cultivation , Virus Replication , Vero Cells , Brazil , Chlorocebus aethiops , Viral Load
2.
Mem. Inst. Oswaldo Cruz ; 114: e180432, 2019. tab, graf
Article in English | LILACS | ID: biblio-984761

ABSTRACT

BACKGROUND The Zika virus (ZIKV) epidemics that affected South America in 2016 raised several research questions and prompted an increase in studies in the field. The transient and low viraemia observed in the course of ZIKV infection is a challenge for viral isolation from patient serum, which leads to many laboratories around the world sharing viral strains for their studies. C6/36 cells derived from Aedes albopictus larvae are commonly used for arbovirus isolation from clinical samples and for the preparation of viral stocks. OBJECTIVES Here, we report the contamination of two widely used ZIKV strains by Brevidensovirus, here designated as mosquito densovirus (MDV). METHODS Molecular and immunological techniques were used to analyse the MDV contamination of ZIKV stocks. Also, virus passages in mammalian cell line and infecting susceptible mice were used to MDV clearance from ZIKV stocks. FINDINGS MDV contamination was confirmed by molecular and immunological techniques and likely originated from C6/36 cultures commonly used to grow viral stocks. We applied two protocols that successfully eliminated MDV contamination from ZIKV stocks, and these protocols can be widely applied in the field. As MDV does not infect vertebrate cells, we performed serial passages of contaminated stocks using a mammalian cell line and infecting susceptible mice prior to re-isolating ZIKV from the animals' blood serum. MDV elimination was confirmed with immunostaining, polymerase chain reaction (PCR), and analysis of the mosquitoes that were allowed to feed on the infected mice. MAIN CONCLUSIONS Since the putative impact of viral contaminants in ZIKV strains generally used for research purposes is unknown, researchers working in the field must be aware of potential contaminants and test viral stocks to certify sample purity.


Subject(s)
Humans , Animals , Virus Cultivation , Biological Specimen Banks , Zika Virus , DNA, Viral , Fluorescent Antibody Technique , Densovirus/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL